45 research outputs found

    Bisphenol A exposure and cardiac electrical conduction in excised rat hearts

    Get PDF
    BACKGROUND: Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased BPA urinary concentrations and cardiovascular disease; yet the direct effects of BPA on the heart are unknown. OBJECTIVES: The goal of our studies was to measure BPA\u27s effect (0.1-100 μM) on cardiac impulse propagation ex vivo, using excised whole hearts from adult rats. METHODS: We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS: Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1 - 100 μM), prolonged action potential duration (1 - 100 μM) and delayed atrioventricular conduction (10 - 100 μM). Importantly, these effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals, dropped ventricular beats and eventually resulted in complete heart block. CONCLUSIONS: Our results show that acute BPA exposure slows electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA\u27s effect on heart electrophysiology and determining whether chronic in vivo exposure can cause/exacerbate conduction abnormalities in patients with pre-existing heart conditions and other high-risk populations

    Generation and escape of local waves from the boundary of uncoupled cardiac tissue

    Get PDF
    We aim to understand the formation of abnormal waves of activity from myocardial regions with diminished cell-to-cell coupling. In route to this goal, we studied the behavior of a heterogeneous myocyte network in which a sharp coupling gradient was placed under conditions of increasing network automaticity. Experiments were conducted in monolayers of neonatal rat cardiomyocytes using heptanol and isoproterenol as means of altering cell-to-cell coupling and automaticity respectively. Experimental findings were explained and expanded using a modified Beeler-Reuter numerical model. The data suggests that the combination of a heterogeneous substrate, a gradient of coupling and an increase in oscillatory activity of individual cells creates a rich set of behaviors associated with self-generated spiral waves and ectopic sources. Spiral waves feature a flattened shape and a pin-unpin drift type of tip motion. These intercellular waves are action-potential based and can be visualized with either voltage or calcium transient measurements. A source/load mismatch on the interface between the boundary and well-coupled layers can lock wavefronts emanating from both ectopic sources and rotating waves within the inner layers of the coupling gradient. A numerical approach allowed us to explore how: i) the spatial distribution of cells, ii) the amplitude and dispersion of cell automaticity, iii) and the speed at which the coupling gradient moves in space, affects wave behavior, including its escape into well-coupled tissue.Comment: 28 pages, 10 figures, submitted to Biophysical Journa

    Evolution of spiral and scroll waves of excitation in a mathematical model of ischaemic border zone

    Get PDF
    Abnormal electrical activity from the boundaries of ischemic cardiac tissue is recognized as one of the major causes in generation of ischemia-reperfusion arrhythmias. Here we present theoretical analysis of the waves of electrical activity that can rise on the boundary of cardiac cell network upon its recovery from ischaemia-like conditions. The main factors included in our analysis are macroscopic gradients of the cell-to-cell coupling and cell excitability and microscopic heterogeneity of individual cells. The interplay between these factors allows one to explain how spirals form, drift together with the moving boundary, get transiently pinned to local inhomogeneities, and finally penetrate into the bulk of the well-coupled tissue where they reach macroscopic scale. The asymptotic theory of the drift of spiral and scroll waves based on response functions provides explanation of the drifts involved in this mechanism, with the exception of effects due to the discreteness of cardiac tissue. In particular, this asymptotic theory allows an extrapolation of 2D events into 3D, which has shown that cells within the border zone can give rise to 3D analogues of spirals, the scroll waves. When and if such scroll waves escape into a better coupled tissue, they are likely to collapse due to the positive filament tension. However, our simulations have shown that such collapse of newly generated scrolls is not inevitable and that under certain conditions filament tension becomes negative, leading to scroll filaments to expand and multiply leading to a fibrillation-like state within small areas of cardiac tissue.Comment: 26 pages, 13 figures, appendix and 2 movies, as accepted to PLoS ONE 2011/08/0

    Output of a valveless Liebau pump with biologically relevant vessel properties and compression frequencies.

    No full text
    Liebau pump is a tubular, non-peristaltic, pulsatile pump capable of creating unidirectional flow in the absence of valves. It requires asymmetrical positioning of the pincher relative to the attachment sites of its elastic segment to the rest of the circuit. Biological feasibility of such valveless pumps remains a hotly debated topic. To test the feasibility of the Liebau-based pumping in vessels with biologically relevant properties we quantified the output of Liebau pumps with their  compliant segments made of a silicone rubber that mimicked the Young modulus of soft tissues. The lengths, the inner diameters, thicknesses of the tested compliant segments ranged from 1 to 5 cm, 3 to 8 mm and 0.3 to 1 mm, respectively. The compliant segment of the setup was compressed at 0.5–2.5 Hz frequencies using a 3.5-mm-wide rectangular piston. A nearest-neighbor tracking algorithm was used to track movements of 0.5-mm carbon particles within the system. The viscosity of the aqueous solution was varied by increased percentage of glycerin. Measurements yielded quantitative relationships between viscosity, frequency of compression and the net flowrate. The use of the Liebau principle of valveless pumping in conjunction with physiologically sized vessel and contraction frequencies yields flowrates comparable to peristaltic pumps of the same dimensions. We conclude that the data confirm physiological feasibility of Liebau-based pumping and warrant further testing of its mechanism using excised biological conduits or tissue engineered components. Such biomimetic pumps can serve as energy-efficient flow generators in microdevices or to study the function of embryonic heart during its normal development or in diseased states

    Agarose slurry as a support medium for bioprinting and culturing freestanding cell-laden hydrogel constructs

    No full text
    © Copyright 2019, Mary Ann Liebert, Inc., publishers 2019. We present a modified method of embedded bioprinting, which allows maintaining freestanding three-dimensional (3D) printed structures in cell culture conditions for extended periods of time. This method, termed CLASS (constructs laid in agarose slurry suspension), was tested using cell-laden alginate and gelatin methacrylate (GelMa)-based bioinks. A direct comparison of 3D printed constructs, supported by gelatin and agarose hydrogel slurries, revealed several advantages, including slurry stability across different print temperatures and blending times, increased slurry homogeneity, and the ability of CLASS to support freestanding constructs for an extended time in cell culture. We conclude that CLASS is a straightforward and cost-efficient way to print and support freestanding cell-laden biomaterials

    Autofluorescence hyperspectral imaging of radiofrequency ablation lesions in porcine cardiac tissue.

    No full text
    © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim Radiofrequency ablation (RFA) is a widely used treatment for atrial fibrillation, the most common cardiac arrhythmia. Here, we explore autofluorescence hyperspectral imaging (aHSI) as a method to visualize RFA lesions and interlesional gaps in the highly collagenous left atrium. RFA lesions made on the endocardial surface of freshly excised porcine left atrial tissue were illuminated by UV light (365 nm), and hyperspectral datacubes were acquired over the visible range (420–720 nm). Linear unmixing was used to delineate RFA lesions from surrounding tissue, and lesion diameters derived from unmixed component images were quantitatively compared to gross pathology. RFA caused two consistent changes in the autofluorescence emission profile: a decrease at wavelengths below 490 nm (ascribed to a loss of endogenous NADH) and an increase at wavelengths above 490 nm (ascribed to increased scattering). These spectral changes enabled high resolution, in situ delineation of RFA lesion boundaries without the need for additional staining or exogenous markers. Our results confirm the feasibility of using aHSI to visualize RFA lesions at clinically relevant locations. If integrated into a percutaneous visualization catheter, aHSI would enable widefield optical surgical guidance during RFA procedures and could improve patient outcome by reducing atrial fibrillation recurrence. (Figure presented.)

    Spectral Changes Caused By Radiofrequency Ablation Of Cardiac Tissue

    Get PDF
    New diagnostic catheters can be developed by delivering and acquiring light through a small fiberoptic bundle. This can provide a useful real time feedback guidance to observe tissue damage caused by thermal injury used to treat cardiac arrhythmias. Yet, little is known about the exact spectral changes caused by radiofrequency ablation (RFA) in different types of cardiac tissue. We hypothesized that the most sensitive optical ranges for characterizing thermal injury can be revealed by comparing spectral information from different areas of the heart before and after RF ablation. Freshly excised porcine hearts were used to acquire and analyze excitation emission matrices (EEMs, 300-600nm with 10 nm spectral step) from ventricular muscle, left atrial endocardium, and aorta. Each type of tissue exhibited distinct EEMs that underwent reproducible changes in fluorescence and reflectance upon RF ablation. Specifically, RFA resulted in a reduction of the NADH fluorescence peak in ventricular and atrial muscle EEMs (360/460nm excitation/emission maxima). It also led to a broadening of collagen fluorescence peak in the aorta and in left atrial tissue. RFA caused an increase in diffuse reflectance (seen as widening of the EEM diagonal line) in all three tissue types. Thermal coagulation of heme-containing proteins, including different forms of myoglobin, led to a weaker absorption in the Soret band range (410-430nm). The latter was particularly noticeable in ventricular tissue but was also significant in the left atrial tissue. We conclude that EEMs provide a wealth of quantitative information that can guide the development of new optical probes to monitor tissue injury and the degree of thermal damage caused by RF ablation of different parts of the heart. Supported by the NIH R41 HL120511 and the LuxCath-GWU Research Agreement

    Hyperspectral imaging for label-free in vivo identification of myocardial scars and sites of radiofrequency ablation lesions

    No full text
    © 2017 The Authors Background: Treatment of cardiac arrhythmias often involves ablating viable muscle tissue within or near islands of scarred myocardium. Yet, today there are limited means by which the boundaries of such scars can be visualized during surgery and distinguished from the sites of acute injury caused by radiofrequency (RF) ablation. Objective: We sought to explore a hyperspectral imaging (HSI) methodology to delineate and distinguish scar tissue from tissue injury caused by RF ablation. Methods: RF ablation of the ventricular surface of live rats that underwent thoracotomy was followed by a 2-month animal recovery period. During a second surgery, new RF lesions were placed next to the scarred tissue from the previous ablation procedure. The myocardial infarction model was used as an alternative way to create scar tissue. Results: Excitation-emission matrices acquired from the sites of RF lesions, scar region, and the surrounding unablated tissue revealed multiple spectral changes. These findings justified HSI of the heart surface using illumination with 365 nm UV light while acquiring spectral images within the visible range. Autofluorescence-based HSI enabled to distinguish sites of RF lesions from scar or unablated myocardium in open-chest rats. A pilot version of a percutaneous HSI catheter was used to demonstrate the feasibility of RF lesion visualization in atrial tissue of live pigs. Conclusion: HSI based on changes in tissue autofluorescence is a highly effective tool for revealing—in vivo and with high spatial resolution—surface boundaries of myocardial scar and discriminating it from areas of acute necrosis caused by RF ablation
    corecore